Linear/Angular Velocity Worksheet

1. Determine the angular velocity in radians per second of a wheel turning at 350rpm.

350 rest 1 min 2 trad = 36.652 ray/sec

2. Determine the rpm of a wheel turning 52.8rad/sec.

52.8 sod 6000 1 rev 504, 203 rod/sec

- 3. A Ferris wheel with a diameter of 220ft takes 42 seconds to rotate once.
 - a. Determine the angular velocity in radians per second of the Ferris wheel.

1=110ff

Treat | Zirrad = 15 rate sec

b. Determine the linear velocity in feet per second of the Ferris wheel.

Determine the linear velocity in feet per second

A angular — need todius for linear

$$\frac{15 \text{ rad}}{560} \left| \frac{110 \text{ ft}}{1 \text{ rad}} \right| = 16.5 \text{ ft/sec}$$

3b _____

4. What is the angular velocity in radians per minute of a notch on a wheel that makes 24 rotations per second about its axis?

24 rox 60sec 2rt rod = 9047.787 rod/min

,	60 min	in me	vev	Ų
/				

5. The minute hand of a watch is 1.3cm long. What is the linear velocity, in cm/sec, of the tip of the hand?

$$\frac{|\text{rest}|}{|\text{compar}|} \frac{|\text{1.3cm}|}{|\text{rest}|} \frac{|\text{2.11 test}|}{|\text{rest}|} \frac{|\text{Learn}|}{|\text{40 sec}|} = .002 \text{ cm/sec}$$

6. A flywheel mounted on an engine crankshaft has a radius of 6in. If the engine is running at 2800rpm, what is the linear velocity of a point on the outer edge of the flywheel in feet/sec?

- 7. A toy race car is traveling around a circular track that is 3.2m in diameter. It is traveling at 0.31 radians per second.
 - a. Find its angular velocity in degrees per minute.

7a		

b. Find its linear velocity in km per hour.

ts linear velocity in km per hour.

$$\frac{1005.701 \text{ deg}}{1000} \frac{60 \text{ mm}}{100} \left| \frac{1.10 \text{ m}}{1000} \right| \frac{1.10 \text{ m}}{3000} \left| \frac{1.1000 \text{ m}}{10000 \text{ m}} \right| \frac{2\pi \text{ case}}{1.000 \text{ m}} = 1.7000 \text{ km/hr}$$

8. A merry-go-round rotates at 3600 degrees per minute. The diameter of its platform is 28ft. What is the speed in miles per hour of a point on the edge of the platform? (5280ft = 1 mile)

$$\frac{36008}{52904} \left| \frac{400m}{1} \frac{144}{1} \frac{211700}{3600} \left| \frac{1}{52904} \right| = 10 \text{ mph}$$

	9. Dan and Ella are riding on a Ferris wheel. Dan observes that it takes 20 seconds to make a complete revolution. The seat is 25 feel from the axle of the wheel.				te	
	nat is their angular velocity (1 MV) (2000)	in revolutions pe	r minute? Deg	rees per minut 1080 dear Inin	e? Radians per min 2 trad 300	ute?
9a	rev/min	1080	_deg/min	18,850	_rad/min	
10. A train wheel : revolut	wheel has a diameter of 30 from slipping off the track, tions per second. at is the linear velocity, in the linear velocity in the linear velocity.	in to the rim, when the projects 1 in beyone the point of a point of the point of t	on the wheel?	e track. The flather wheel of the $r=1510$	train is rotating at	
				10a _		