Pre-Calculus Review: Angles, Arcs and Sectors Grombacher/Katterjohn/Rodell

Name:	
Period:	Date:

nd the degree and radian measure of the angle in standard position formed by rotating the terminal side by the given amount. Leave radian measures in terms of π .

1.
$$\frac{2}{3}$$
 of a circle $\frac{2}{3}(360)$

Radians $\frac{4}{3}$ TT

Degrees 240° $(\frac{17}{180^{\circ}})$

2.
$$\frac{7}{6}$$
 of a circle

Radians $\frac{1}{3}\pi$ $\frac{7}{6}(360)$

Degrees $\frac{420^{\circ}}{187}$

Convert each angle to decimal degree form. Round to three decimal places. You must show all work.

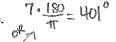
$$4. 54^{\circ} 45' = 54.750^{\circ}$$

6.
$$2^{\circ}2'10'' = 2.03(g^{\circ})$$

Convert each angle measure to DoM'S" form. You must show work.

7.
$$-345.12^{\circ} = \frac{-345^{\circ}7^{1}12^{11}}{.12(60) = 7.2}$$

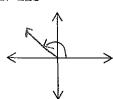
 $.2(60) = 12$


8.
$$3.794^{\circ} = 3^{\circ} 47' 38''$$

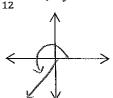
 $.794(60) = 47.64$
 $.64(60) = 38.4$

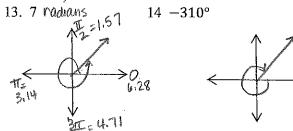
9.
$$3.58^{\circ} = 3^{\circ} 34^{1} 48^{11}$$

 $.58(60) = 34.8$
 $.8(60) = 48$

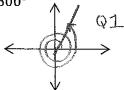

Find the complement of the given angle. Leave answer in terms of π .

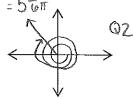
10.
$$\frac{\pi}{12} = \frac{5\pi}{12}$$
Complement of 90° or $\frac{\pi}{2}$


Draw the given angles. Show direction and label the terminal side.



11. 123°

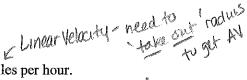

12. $\frac{17\pi}{12} = |\frac{5}{12}\pi$



Name the quadrant in which or the axis on which the terminal siade of the give angle would be located. Draw the angle labeling the direction.

15. 800°

Find the following. Show all your work.


17. A circle has a radius of 4 inches. Find the length of the arc intercepted by an angle of 240°.

S = r
$$\theta$$

 $S = 4(240) \frac{\pi}{180}$

18. A sprinkler on a golf course is set to spray water over a distance of 70 feet and rotates through an angle of 120°. Find the area of the fairway watered by the sprinkler. Round to the nearest square foot.

19. Find the degree measure of the angle θ of a sector in a circle whose diameter is 150 cm and an arc length of 360 cm.

$$4\pi + \frac{\pi}{2} = \frac{9\pi}{2} = 9$$

- 21. Hans rides a vehicle with large tires of radius 16 inches at 24 miles per hour.
- a) Find the angular velocity of a tire in radians per minute. 24 pr. 1 hr 1 rad 12 m, 5280 ft =

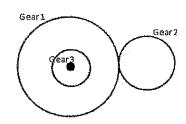
1584	mulain
	rad mun

b) Haw many revolutions per minute does the tire make?

22. Determine the angular velocity of the tip of the second hand of a clock in radians per second.

23. A Ferris wheel with a diameter of 250 feet makes one rotation every 45 seconds. Determine the linear velocity in feet per minute of a car on the rim of the wheel. ? Makes no grammatical sense whoses a!

23. 1047,198 ft/min


24. A toy racing car is traveling around a circular racing track that is 3.2 m in diamenter. Its linear velocity is 0.5 m/sec. What is its angular velocity in rev/min?

24. 2.984 rev/min

25. In the diagram to the right Gear 1 and Gear 3 share the same axle. Gear 1 is driven by Gear 2. Which two gears have the same angular velocity and which two have the same linear velocity?

Same Angular Velocity 43 Same linear velocity 42

1. radians; $\frac{4\pi}{3}$ degrees: 240° 2. radians: $\frac{7\pi}{3}$ degrees: 420° 3. 85.308° 4. 54.750° 5. -408.272° 6. 2.036° 7. -345° 7' 12" 8. 3° 47' 38" 9. 3° 34' 48" 10. $\frac{5\pi}{12}$ 11. QII 12. QIII 13. QI 14. QI 15. QI 16. QII 17. 16.755 18. 5131 ft^2 19. 275.020° 20. 70.686 cm 21. 1584 rad/min 22. .105 rocc/min 23. 1047.198 ft/min 24. 2.984 rev/min 25. Same AV-gear 1 and 3, Same LV- Gear 1 and 2 0, 252-101

	e e e e e e e e e e e e e e e e e e e		